Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements.

نویسندگان

  • A R Lohe
  • E N Moriyama
  • D A Lidholm
  • D L Hartl
چکیده

Horizontal transmission has been well documented as a major mechanism for the dissemination of mariner-like elements (MLEs) among species. Less well understood are mechanisms that limit vertical transmission of MLEs resulting in the "spotty" or discontinuous distribution observed in closely related species. In this article we present evidence that the genome of the common ancestor of the melanogaster species subgroup of Drosophila contained an MLE related to the mellifera (honey bee) subfamily. Horizontal transmission, approximately 3-10 MYA, is strongly suggested by the observation that the sequence of the MLE in Drosophila erecta is 97% identical in nucleotide sequence with that of an MLE in the cat flea, Ctenocephalides felis. The D. erecta MLE has a spotty distribution among species in the melanogaster subgroup. The element has a high copy number in D. erecta and D. orena, a moderate copy number in D. teissieri and D. yakuba, and was apparently lost ("stochastic loss") in the lineage leading to D. melanogaster, D. simulans, D. mauritiana, and D. sechellia. In D. erecta, most copies are concentrated in the heterochromatin. Two copies from D. erecta, denoted De12 and De19, were cloned and sequenced, and they appear to be nonfunctional ("vertical inactivation"). It therefore appears that the predominant mode of MLE evolution is vertical inactivation and stochastic loss balanced against occasional reinvasion of lineages by horizontal transmission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New mariner elements in Anastrepha species (Diptera: Tephritidae).

Mariner-like elements (MLE) are members from class II of transposable elements also known as DNA transposons. These elements have a wide distribution among different groups of organisms, including insects, which can be explained by horizontal and vertical gene-transfer. MLE families have been described in tephritid flies and other genera. During screening for Wolbachia bacteria in fruit flies o...

متن کامل

Vertical evolution and horizontal transfer of CR1 non-LTR retrotransposons and Tc1/mariner DNA transposons in Lepidoptera species.

Horizontal transfer (HT) is a complex phenomenon usually used as an explanation of phylogenetic inconsistence, which cannot be interpreted in terms of vertical evolution. Most examples of HT of eukaryotic genes involve transposable elements. An intriguing feature of HT is that its frequency differs among transposable elements classes. Although HT is well known for DNA transposons and long termi...

متن کامل

Evolution of the transposable element mariner in Drosophila species.

The distribution of the transposable element mariner was examined in the genus Drosophila. Among the eight species comprising the melanogaster species subgroup, the element is present in D. mauritiana, D. simulans, D. sechellia, D. yakuba and D. teissieri, but it is absent in D. melanogaster, D. erecta and D. orena. Multiple copies of mariner were sequenced from each species in which the elemen...

متن کامل

Characterization and molecular phylogenetic analysis of mariner elements from wild and domesticated species of silkmoths.

Transposable elements are powerful tools for studying molecular genetics as they serve as agents for chromosomal insertions, deletions, or rearrangements and are found to be maintained in a variety of the genomes. The mariner like elements (MLEs), first isolated from Drosophila mauritiana (Haymer and Marsh, 1986; Jacobson et al., 1986), are now known to be present in a wide range of animal spec...

متن کامل

The Role of Vertical and Horizontal Transfer in the Evolutionary Dynamics of PIF-Like Transposable Elements in Triticeae

PIF-like transposable elements are members of the PIF/Harbinger superfamily of DNA transposons found in the genomes of many plants, animals, and fungi. The evolution of the gene that encodes the transposase responsible for mobilizing PIF-like elements has been studied in both plants and animals, but the elements' history in flowering plants remains poorly known. In this work, we describe the ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 1995